I’m a bit late onto this as I was rather busy last week, but I couldn’t resist passing on the news that the IceCube Neutrino Observatory has detected high-energy neutrinos (Tev) from the active galaxy NGC1068 (also known as Messier 77). The result is published in Science whence I stole this figure showing the concentration neutrinos correlated with the position of NGC1068, along with a couple of other sources.
The hotspot associated with NGC 1068 is the most intense feature observed on the whole sky. I won’t write any more because there are two videos about this discovery, the first a quick summary for general viewers:
/
And the second is the full hour-long presentation as given last week.
Before I go for a lie down here is a video that goes with the discovery of the first astrophysical source of high-energy neutrinos!
You can find the two Science papers relating to the discovery here and here. The first abstract reads:
Previous detections of individual astrophysical sources of neutrinos are limited to the Sun and the supernova 1987A, whereas the origins of the diffuse flux of high-energy cosmic neutrinos remain unidentified. On 22 September 2017, we detected a high-energy neutrino, IceCube-170922A, with an energy of ~290 TeV. Its arrival direction was consistent with the location of a known γ-ray blazar, TXS 0506+056, observed to be in a flaring state. An extensive multi-wavelength campaign followed, ranging from radio frequencies to γ-rays. These observations characterize the variability and energetics of the blazar and include the detection of TXS 0506+056 in very-high-energy γ-rays. This observation of a neutrino in spatial coincidence with a γ-ray–emitting blazar during an active phase suggests that blazars may be a source of high-energy neutrino.
The other abstract is:
A high-energy neutrino event detected by IceCube on 22 September 2017 was coincident in direction and time with a gamma-ray flare from the blazar TXS 0506+056. Prompted by this association, we investigated 9.5 years of IceCube neutrino observations to search for excess emission at the position of the blazar. We found an excess of high-energy neutrino events, with respect to atmospheric backgrounds, at that position between September 2014 and March 2015. Allowing for time-variable flux, this constitutes 3.5σ evidence for neutrino emission from the direction of TXS 0506+056, independent of and prior to the 2017 flaring episode. This suggests that blazars are identifiable sources of the high-energy astrophysical neutrino flux.
The views presented here are personal and not necessarily those of my employer (or anyone else for that matter).
Feel free to comment on any of the posts on this blog but comments may be moderated; anonymous comments and any considered by me to be vexatious and/or abusive and/or defamatory will not be accepted. I do not necessarily endorse, support, sanction, encourage, verify or agree with the opinions or statements of any information or other content in the comments on this site and do not in any way guarantee their accuracy or reliability.