Breaking News. Alarming footage just released by MI5 reveals the true nature of the threat to the forthcoming 2012 Olympic games and explains why it is necessary to station missile batteries in London’s East End.
Follow @telescoperArchive for April, 2012
Godzilla versus the Olympics
Posted in Uncategorized with tags Godzilla, Olympics on April 30, 2012 by telescoperHere’s That Rainy Day ..
Posted in Jazz with tags Bill Evans, Here's that Rainy Day, Jazz on April 28, 2012 by telescoperIf yesterday’s post made you wonder how difficult it is to turn a piece of sheet music into sound using a piano keyboard, then perhaps today’s will make you wonder how a pianist like Bill Evans managed to create music as beautiful as this without any score at all! This is Here’s that Rainy Day from the 1968 album Bill Evans Alone. Miles Davis said of Bill Evans “He plays the piano the way it should be played”. I, for one, won’t argue with that.
Follow @telescoper
The Piano in Question
Posted in Music with tags Dudley Moore, Jonathan Miller, The Body Question on April 27, 2012 by telescoperHere’s a trip down memory lane for me. While I was at school I was captivated by the BBC TV series, directed and introduced by Jonathan Miller, called the Body in Question. This episode, first broadcast in 1978, shows Dr Miller at the piano with Dudley Moore, his old friend from Beyond the Fringe. They’re exploring the mysterious process by which pianists manage to put their fingers on the right keys without apparently consciously thinking about the mechanical operations involved or even looking at the keyboard. Practice seems to program the hands so that the translation from sheet music to sound becomes second nature, but to those without the ability to effect the transformation (like myself), the process still seems almost miraculous.
Follow @telescoperA Little Bit of Nuclear..
Posted in Cute Problems with tags Nuclear Physics, Nuclear reactions, Q-values on April 26, 2012 by telescoperIt’s been a while since I posted any cute physics problems, so here’s a little one to amuse you this rainy Thursday morning.
In the following the notation A(a,b)B means the reaction a+A→b+B. The atomic number of Oxygen is 8 and that of Fluorine is 9.
The Q-value (i.e. energy release) of the reaction 19O(p,n)19F is 4.036 MeV, but the minimum energy of a neutron which, incident on a carbon tetrafluoride target, can induce the reaction 19F(n,p)19O is 4.248 MeV. Account for the difference between these two values.
Follow @telescoperApril Rain Song
Posted in Poetry with tags April Rain Song, Langston Hughes, Poetry on April 26, 2012 by telescoperLet the rain kiss you.
Let the rain beat upon your head with silver liquid drops.
Let the rain sing you a lullaby.
The rain makes still pools on the sidewalk.
The rain makes running pools in the gutter.
The rain plays a little sleep-song on our roof at night—
And I love the rain.
by Langston Hughes (1902-1967)
Follow @telescoperHomecoming
Posted in Uncategorized with tags Coalition for Equal Marriage on April 25, 2012 by telescoperCOBE and after…
Posted in Biographical, The Universe and Stuff with tags COBE, Cosmic Microwave Background, University of Kansas, WMAP on April 24, 2012 by telescoperAn item on the BBC website yesterday reminds me that it is twenty years since the announcement, in April 1992, of the discovery of temperature variations across the sky in the cosmic microwave background radiation by the Cosmic Background Explorer (COBE). Was it really so long ago?
At the time the announcement was made as I actually in the USA. In fact, I was at the University of Kansas for about a month working on this paper with Adrian Melott and Sergei Shandarin, which eventually came out early in 1993. I remember it very well because we started the project, did all the calculations and wrote up the paper within the short time I was there. Oh what it is to be a postdoc, having only research to think about and none of the other distractions that come with more senior positions.
Anyway, the COBE announcement hit the news while I was there and it got a lot of press coverage. I even did a TV interview myself, for a local cable news channel. Nor surprisingly, they were pretty clueless about the physics of the cosmic microwave background; what had drawn them to the story was George Smoot’s comment that seeing the pattern of fluctuations was “like seeing the face of God”. They were disappointed when I answered their questions about God with “I don’t know, I’m an atheist”.

The Face of God?
I didn’t know at the time that the way the announcement of the COBE discovery was handled had caused such ructions. Apparently George Smoot let his enthusiasm get the better of him, broke ranks with the rest of the COBE team, and did his own press conference which led to accusations that he was trying to steal the limelight and a big falling-out between Smoot and other members of the team, especially John Mather. It’s unfortunate that this cast a shadow over what was undoubtedly one of the most important science discoveries of the twentieth century. Without COBE there would have been no WMAP and no Planck, and our understanding of the early Universe and the formation of galaxies and large-scale structure would still be in the dark ages.
As a lowly postdoc at the time, living a hand-to-mouth existence on short-term contracts, I didn’t realise that I would still be working in cosmology twenty years later, let alone become a Professor. Nor could I have predicted how much cosmology would change over the next two decades. Most of all, though, I never even imagined that I’d find myself travelling to Stockholm as a guest of the Nobel Foundation to attend the ceremony and banquet at which the 2006 Nobel Prize for Physics was awarded to George Smoot and John Mather for the COBE discovery. It was a wonderful one-in-a-lifetime experience, made all the nicer because Smoot and Mather seemed to have made peace at last.
Where were you when the COBE results came out?
Follow @telescoperControversy brewing at ESA?
Posted in Science Politics with tags ATHENA, ESA, European Space Agency, JUICE, NGO on April 23, 2012 by telescoperInteresting stuff over at the e-astronomer relating to ESA’s handling of the process of selecting its next L-class mission. The plot thickens.
So the Athena folk are somewhat miffed at being pipped by Juice. (This metaphor doesn’t seem quite right ? Ed.) But what about Horse Number Three ? Aren’t the NGO folk doing a Grand Petition ? Nope. It seems their tactic is a semi-formal complaint about inadeqacies in the process : an email letter direct to Gimenez. I am not sure how widely it has been circulated, but I understand it is stern stuff, bringing up issues of inappropriate revisions of costings and risk factors, and inadequately resolved conflicts of interest. Feel free to comment if you have clear knowledge, but please (a) do not leak things that are confidential, and (b) keep coments about process and not about individuals.
Its not really clear what competition means when a very small number of items is under consideration, and moreoever each item represents one community-segment, each of which ESA wishes to…
View original post 356 more words
On the Dearth of Dark Matter in the Solar Neighbourhood
Posted in Astrohype, The Universe and Stuff with tags dark matter, ESA, ESO, GAIA, Galactic Disk, Gravity, Hipparchos, La Silla Observatory, Milky Way on April 22, 2012 by telescoperI’m a bit late getting onto the topic of dark matter in the Solar Neighbourhood, but it has been generating quite a lot of news, blogposts and other discussion recently so I thought I’d have a bash this morning. The result in question is a paper on the arXiv by Moni Bidin et al. which has the following abstract:
We measured the surface mass density of the Galactic disk at the solar position, up to 4 kpc from the plane, by means of the kinematics of ~400 thick disk stars. The results match the expectations for the visible mass only, and no dark matter is detected in the volume under analysis. The current models of dark matter halo are excluded with a significance higher than 5sigma, unless a highly prolate halo is assumed, very atypical in cold dark matter simulations. The resulting lack of dark matter at the solar position challenges the current models.
As far as I’m aware, Oort (1932, 1960) was the first to perform an analysis of the vertical equilibrium of the stellar distribution in the solar neighbourhood. He argued that there is more mass in the galactic disk than can be accounted for by star counts. A reanalysis of this problem by Bahcall (1984) argued for the presence of a dark “disk” of a scale height of about 700 pc. This was called into question by Bienaymé et al. (1987), and by Kuijken & Gilmore in 1989. In a later analysis based on a sample of stars with HIPPARCOS distances and Coravel radial velocities, within 125 pc of the Sun. Crézé et al. (1998) found that there is no evidence for dark matter in the disk of the Milky Way, claiming that all the matter is accounted for by adding up the contributions of gas, young stars and old stars.
The lack of evidence for dark matter in the Solar Neighbourhood is not therefore a particularly new finding; there’s never been any strong evidence that it is present in significant quantities out in the suburbs of the Milky Way where we reside. Indeed, I remember a big bust-up about this at a Royal Society meeting I attended in 1985 as a fledgling graduate student. Interesting that it’s still so controversial 27 years later.
Of course the result doesn’t mean that the dark matter isn’t there. It just means that its effect is too small compared to that of the luminous matter, i.e. stars, for it to be detected. We know that the luminous matter has to be concentrated more centrally than the dark matter, so it’s possible that the dark component is there, but does not have a significant effect on stellar motions near the Sun.
The latest, and probably most accurate, study has again found no evidence for dark matter in the vicinity of the Sun. If true, this may mean that attempts to detect dark matter particles using experiments on Earth are unlikely to be successful.
The team in question used the MPG/ESO 2.2-metre telescope at ESO’s La Silla Observatory, along with other telescopes, to map the positions and motions of more than 400 stars with distances up to 13000 light-years from the Sun. From these new data they have estimated the mass of material in a volume four times larger than ever considered before but found that everything is well explained by the gravitational effects of stars, dust and gas with no need for a dark matter component.
The reason for postulating the existence of large quantities of dark matter in spiral galaxies like the Milky Way is the motion of material in the outer parts, far from the Solar Neighbourhood (which is a mere 30,000 light years from Galactic Centre). These measurements are clearly inconsistent with the distribution of visible matter if our understanding of gravity is correct. So either there’s some invisible matter that gravitates or we need to reconsider our theories of gravitation. The dark matter explanation also fits with circumstantial evidence from other contexts (e.g. galaxy clusters), so is favoured by most astronomers. In the standard theory the Milky Way is surrounded by am extended halo of dark matter which is much less concentrated than the luminous material by virtue of it not being able to dissipate energy because it consists of particles that only interact weakly and can’t radiate. Luminous matter therefore outweighs dark matter in the cores of galaxies, but the situation is reversed in the outskirts. In between there should be some contribution from dark matter, but since it could be relatively modest it is difficult to estimate.
The study by Moni Bidin et al. makes a number of questionable assumptions about the shape of the Milky Way halo – they take it to be smooth and spherical – and the distribution of velocities within it is taken to have a very simple form. These may well turn out to be untrue. In any case the measurements they needed are extremely difficult to make, so they’ll need to be checked by other teams. It’s quite possible that this controversy won’t be actually resolved until the European Space Agency’s forthcoming GAIA mission.
So my take on this is that it’s a very interesting challenge to the orthodox theory, but the dark matter interpretation is far from dead because it’s not obvious to me that these observations would have uncovered it even if it is there. Moreover, there are alternative analyses (e.g. this one) which find a significant amount of dark matter using an alternative modelling method which seems to be more robust. (I’m grateful to Andrew Pontzen for pointing that out to me.)
Anyway, this all just goes to show that absence of evidence is not necessarily evidence of absence…
Follow @telescoper