Archive for March, 2012

Big Bang Acoustics

Posted in The Universe and Stuff with tags , , , , , , on March 12, 2012 by telescoper

It’s National Science and Engineering Week this week and as part of the programme of events in Cardiff we have an open evening at the School of Physics & Astronomy tonight. This will comprise a series of public talks followed by an observing session using the School’s Observatory. I’m actually giving a (short) talk myself, which means it will be a long day, so I’m going to save time by recycling the following from an old blog post on the subject of my talk.

As you probably know the Big Bang theory involves the assumption that the entire Universe – not only the matter and energy but also space-time itself – had its origins in a single event a finite time in the past and it has been expanding ever since. The earliest mathematical models of what we now call the  Big Bang were derived independently by Alexander Friedman and George Lemaître in the 1920s. The term “Big Bang” was later coined by Fred Hoyle as a derogatory description of an idea he couldn’t stomach, but the phrase caught on. Strictly speaking, though, the Big Bang was a misnomer.

Friedman and Lemaître had made mathematical models of universes that obeyed the Cosmological Principle, i.e. in which the matter was distributed in a completely uniform manner throughout space. Sound consists of oscillating fluctuations in the pressure and density of the medium through which it travels. These are longitudinal “acoustic” waves that involve successive compressions and rarefactions of matter, in other words departures from the purely homogeneous state required by the Cosmological Principle. The Friedman-Lemaitre models contained no sound waves so they did not really describe a Big Bang at all, let alone how loud it was.

However, as I have blogged about before, newer versions of the Big Bang theory do contain a mechanism for generating sound waves in the early Universe and, even more importantly, these waves have now been detected and their properties measured.

The above image shows the variations in temperature of the cosmic microwave background as charted by the Wilkinson Microwave Anisotropy Probe about a decade years ago. The average temperature of the sky is about 2.73 K but there are variations across the sky that have an rms value of about 0.08 milliKelvin. This corresponds to a fractional variation of a few parts in a hundred thousand relative to the mean temperature. It doesn’t sound like much, but this is evidence for the existence of primordial acoustic waves and therefore of a Big Bang with a genuine “Bang” to it.

A full description of what causes these temperature fluctuations would be very complicated but, roughly speaking, the variation in temperature you see in the CMB corresponds directly to variations in density and pressure arising from sound waves.

So how loud was it?

The waves we are dealing with have wavelengths up to about 200,000 light years and the human ear can only actually hear sound waves with wavelengths up to about 17 metres. In any case the Universe was far too hot and dense for there to have been anyone around listening to the cacophony at the time. In some sense, therefore, it wouldn’t have been loud at all because our ears can’t have heard anything.

Setting aside these rather pedantic objections – I’m never one to allow dull realism to get in the way of a good story- we can get a reasonable value for the loudness in terms of the familiar language of decibels. This defines the level of sound (L) logarithmically in terms of the rms pressure level of the sound wave Prms relative to some reference pressure level Pref

L=20 log10[Prms/Pref]

(the 20 appears because of the fact that the energy carried goes as the square of the amplitude of the wave; in terms of energy there would be a factor 10).

There is no absolute scale for loudness because this expression involves the specification of the reference pressure. We have to set this level by analogy with everyday experience. For sound waves in air this is taken to be about 20 microPascals, or about 2×10-10 times the ambient atmospheric air pressure which is about 100,000 Pa.  This reference is chosen because the limit of audibility for most people corresponds to pressure variations of this order and these consequently have L=0 dB. It seems reasonable to set the reference pressure of the early Universe to be about the same fraction of the ambient pressure then, i.e.

Pref~2×10-10 Pamb

The physics of how primordial variations in pressure translate into observed fluctuations in the CMB temperature is quite complicated, and the actual sound of the Big Bang contains a mixture of wavelengths with slightly different amplitudes so it all gets a bit messy if you want to do it exactly, but it’s quite easy to get a rough estimate. We simply take the rms pressure variation to be the same fraction of ambient pressure as the averaged temperature variation are compared to the average CMB temperature,  i.e.

Prms~ a few ×10-5Pamb

If we do this, scaling both pressures in logarithm in the equation in proportion to the ambient pressure, the ambient pressure cancels out in the ratio, which turns out to be a few times 10-5

With our definition of the decibel level we find that waves corresponding to variations of one part in a hundred thousand of the reference level  give roughly L=100dB while part in ten thousand gives about L=120dB. The sound of the Big Bang therefore peaks at levels just a bit less than  120 dB. As you can see in the Figure to the left, this is close to the threshold of pain,  but it’s perhaps not as loud as you might have guessed in response to the initial question. Many rock concerts are actually louder than the Big Bang, so I suspect any metalheads in the audience will be distinctly unimpressed.

A useful yardstick is the amplitude  at which the fluctuations in pressure are comparable to the mean pressure. This would give a factor of about 1010 in the logarithm and is pretty much the limit that sound waves can propagate without distortion. These would have L≈190 dB. It is estimated that the 1883 Krakatoa eruption produced a sound level of about 180 dB at a range of 100 miles. By comparison the Big Bang was little more than a whimper.

PS. If you would like to read more about the actual sound of the Big Bang, have a look at John Cramer’s webpages. You can also download simulations of the actual sound. If you listen to them you will hear that it’s more of  a “Roar” than a “Bang” because the sound waves don’t actually originate at a single well-defined event but are excited incoherently all over the Universe.

PPS. If you would like to hear a series of increasingly sophisticated computer simulations showing how our idea of the sounds accompanying the start of the Universe has evolved over the past few years, please take a look at the following video. It’s amazing how crude the 1995 version seems, compared with that describing the new era of precision cosmology.

Sonnet No. 116

Posted in Poetry with tags , , on March 11, 2012 by telescoper

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove:
O no! it is an ever-fixed mark
That looks on tempests and is never shaken;
It is the star to every wandering bark,
Whose worth’s unknown, although his height be taken.
Love’s not Time’s fool, though rosy lips and cheeks
Within his bending sickle’s compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me proved,
I never writ, nor no man ever loved.

Sonnet No. 116, by William Shakespeare (1564-1616)

P.S. This is one of over a hundred love sonnets written by Shakespeare to a young man to whom he was deeply devoted. If you think we shouldn’t admit impediments to people in similar relationships nowadays then perhaps you would consider signing the petition organized by the coalition for equal marriage

Helle Nacht – Per Nørgård

Posted in Music with tags , , on March 11, 2012 by telescoper

And now for something completely different. I was listening to CD Review on Radio 3 yesterday morning and in the course of a fascinating section about new modern classical works, I heard some wonderful music by a Danish composer called Per Nørgård, whose name (pronounced in Danish something like nur-gaw) was quite new to me until then.  I’ve spent most of this morning downloading various collections of his music and am now in danger of becoming a Nørgård bore.

Much of  Nørgård’s  music is based on ideas inspired by fractal geometry and exploits the so-called infinity series, representing a kind of extension of the serial techniques pioneered by such composers as Arnold Schoenberg.  One of the great things about Nørgård, however,  is that you really don’t need to know about that, or indeed that the following piece was inspired by the Aurora Borealis, in order to enjoy it. This is Nørgård’s Violin Concerto No. 1 Helle Nacht.

Worries for Science in Spain

Posted in Finance, Politics, Science Politics with tags , on March 10, 2012 by telescoper

I recently received the following email letter, concerning the state of science funding in Spain.  As well as passing it on to colleagues I thought I would post it on this blog where it might have wider impact:

Dear colleague,

You probably know very well how the global crisis is affecting southern Europe, and in particular Spain. Some of us are promoting a campaign among the worlwide scientific community to prevent our conservative government from straining even more the science system in Spain, that so many successes has obtained in the last decade, but whose future is now at stake.

In the next few weeks, and contravening recommendation from the European Commission stating that public deficit control measures should not affect Research and Development (R&D) and innovation, the Spanish Government and Parliament could approve a State Budget for 2012 that would cause considerable long-term damage to the already weakened Spanish research system, contributing to its collapse.

There is an open letter that we are sending to distinguished scientists all over the world, including many Nobel Prize Winners and Members of Academies of Science, asking them to sign, support the motion and spread the word:

http://www.investigaciondigna.es/wordpress/sign

Please do help us by signing the letter and passing it on to your colleagues.

Kind regards,

Alexander Knebe

The “open letter” you can read by clicking on the link contains some interesting – and alarming – information that has serious implications for our colleagues not only in Spain but elsewhere in Europe. Take a look, for example, at the following picture that shows the fraction of GDP being invested in science:

This isn’t just about Spain, although the situation is clearly especially serious for Spanish Science. It’s a timely reminder that the UK is also well below the EU average in terms of science spend. Is it a coincidence that the EU’s worst-performing economies are all on the right of this figure? Is that where we want the UK to be too?

PCs versus Macs

Posted in Uncategorized with tags , , , on March 10, 2012 by telescoper

It will be well known to the regular readers of the blog (Sid and Doris Bonkers) that I am not the sort of chap who’s likely to get involved in the PC versus Mac controversy. Except occasionally. And with great reluctance. It doesn’t do any good to take sides in such conflicts. I couldn’t resist passing on this little picture I found in internetland, however, which I know will not upset any Mac users….

P.S. I still think the LHC control room looks like the inside of a betting shop.

Fukushima – a year on

Posted in Uncategorized with tags , , , , on March 9, 2012 by telescoper

It’s almost a year since the Japanese earthquake that produced a tsunami and consequent disaster at the Fukushima Daiichi Nuclear Power plant on March 11th 2011.

Here’s a video, produced by Nature magazine, showing the continuing efforts to clean up.

I’ve been teaching Nuclear Physics this term and while I was talking about chain reactions, neutron capture, control rods and the like, the other day I suddenly realised that the class of twenty-somethings in front of me had all been born after Chernobyl and were probably unaware of just how scary it was at the time. The current generation of students, and those following it, will be among those who are going to have to grapple with a very serious problem as oil and gas supplies dwindle over the next decades. People can make their own mind up about what’s the best way to tackle this crisis, but my view is that at least in the short term we’re stuck with nuclear fission reactors for at least some of our energy needs – with improved energy efficiency and appropriate use of renewable sources helping – until fusion power comes to the rescue.

The Meaning of Research

Posted in Uncategorized with tags , , , , , on March 8, 2012 by telescoper

An interesting email exchange yesterday evening led me to write this post in the hope of generating a bit of crowd sourcing.

The issue at hand concerns the vexed question of the etymology and original meaning of the word “research” (specifically in the context of scholarly enquiry). The point is that the latin prefix re- usually seems to imply repetition whereas the meaning we have for research nowadays is that something new is being sought.

My first thought was to do what I always do in such situations, which is reach for the online edition of the Oxford English Dictionary wherein I found the following:

Etymology: Apparently < re- prefix + search n., after Middle French recerche (rare), Middle French, French recherche thorough investigation (1452; a1704 with spec. reference to investigation into intellectual or academic questions; 1815 in plural denoting scholarly research or the published results of this) … Compare Italian ricerca (1470). Compare slightly later research v.1

Interestingly, my latin dictionary gives a number of words for the verb form of research, such as “investigare”, most of which have recognisable English descendants, but there isn’t a word resembling “research”, or even “search”, so these must have been brought into French from some other source. The prefix re- was presumably added in line with the usual treatment of Latin words brought into French.

Most of the brain cells containing my knowledge of Latin died a long time ago, but I do recall from my school days that the prefix re- does not always mean “again” in that language, and alternative meanings have crept into other languages too. In particular, “re-” is sometimes used simply as an intensifier. I remember “resplendent” is derived from “resplendere” which means to shine (splendere) intensely, not to shine again. Likewise we have replete, which means extremely full, not full again.

This led me to my theory, henceforth named Theory A, that the French “recherche” and the italian “ricerca” originally meant “to search intensely, or with particular thoroughness” as in a scholar poring over documents (presumably including the Bible). Support for this idea can be found here where it says

1570s, “act of searching closely,” from M.Fr. recerche (1530s), from O.Fr. recercher “seek out, search closely,” from re-, intensive prefix, + cercher “to seek for” (see search). Meaning “scientific inquiry” is first attested 1630s…

Being a web source, one can’t attest to its reliability and the dates quoted to differ from the OED, but it shows that at least one other person in the world has the same interpretation as me! However, Iin the interest of balance I should also quote, for example,  this dissenting opinion which is also slightly at odds with the OED:

As per the Merriam-Webster Online Dictionary, the word research is derived from the Middle French “recherche”, which means “to go about seeking”, the term itself being derived from the Old French term “recerchier” a compound word from “re-” + “cerchier”, or “sercher”, meaning ‘search’. The earliest recorded use of the term was in 1577.

My correspondent (and regular commenter on here), Anton, suggested an alternative theory which is based on an idea that can be traced back to Plato. This reminded me of the following explanation of the purpose of scholarship by the Venerable Jorgi in Umberto Eco’s novel The Name of the Rose:

..the preservation of knowledge. Preservation, I say. Not search for… because there is no progress in the history of knowledge … merely a continuous and sublime recapitulation.

Plato indeed argued that true novelty and originality are impossible to achieve. In the Dialogues, Plato has Meno ask Socrates:

“How will you look for it, Socrates, when you do not know at all what it is? How will you aim to search for something you do not know at all? If you should meet with it, how will you know that this is the thing that you did not know? “

And Socrates answers:

“I know what you want to say, Meno … that a man cannot search either for what he knows or for what he does not know. He cannot search for what he knows—since he knows it, there is no need to search—nor for what he does not know, for he does not know what to look for.”

Theory B then is that research has an original meaning derived from this strange (but apparently extremely influential) Platonic idea in which “re-” really does imply repetition.

We scientists think of the scientific method as a means of justifying and validating new ideas, not a method by which new ideas can be generated, but generating new ideas is essential if science can be really said to advance. As one article I read states puts it “We aim for new-search not re-search. It is new-search that advances our understanding of how the world works.”

My research suggests that it’s possible that research doesn’t really mean re-search anyway but I can’t say I have any evidence that convincingly favours Theory A over Theory B. Maybe this is where the blogosphere can help?

I know I have an eclectic bunch of readers so, although it’s unlikely that an expert in 16th Century French is among my subscribers, I wonder if anyone out there can think of any decisive evidence that might resolve this etymological conundrum? If so, please let me have your contributions through the comments box.

In the meantime let’s subject this to a poll…

A Piece on a Paradox

Posted in The Universe and Stuff with tags , , , , , , , , , on March 7, 2012 by telescoper

Not long ago I posted a short piece about the history of cosmology which got some interesting comments, so I thought I’d try again with a little article I wrote a while ago on the subject of Olbers’ Paradox. This is discussed in almost every astronomy or cosmology textbook, but the resolution isn’t always made as clear as it might be. The wikipedia page on this topic is unusually poor by the standards of wikipedia, and appears to have suffered a severe attack of the fractals.

I’d be interested in any comments on the following attempt.

One of the most basic astronomical observations one can make, without even requiring a telescope, is that the night sky is dark. This fact is so familiar to us that we don’t imagine that it is difficult to explain, or that anything important can be deduced from it. But quite the reverse is true. The observed darkness of the sky at night was regarded for centuries by many outstanding intellects as a paradox that defied explanation: the so-called Olbers’ Paradox.

The starting point from which this paradox is developed is the assumption that the Universe is static, infinite, homogeneous, and Euclidean. Prior to twentieth century developments in observation (Hubble’s Law) and theory  (Cosmological Models based on General Relativity), all these assumptions would have appeared quite reasonable to most scientists. In such a Universe, the intensity of light received by an observer from a source falls off as the inverse square of the distance between the two. Consequently, more distant stars or galaxies appear fainter than nearby ones. A star infinitely far away would appear infinitely faint, which suggests that Olbers’ Paradox is avoided by the fact that distant stars (or galaxies) are simply too faint to be seen. But one has to be more careful than this.

Imagine, for simplicity, that all stars shine with the same brightness. Now divide the Universe into a series of narrow concentric spherical shells, in the manner of an onion. The light from each source within a shell of radius r  falls off as r^{-2}, but the number of sources increases in the same manner. Each shell therefore produces the same amount of light at the observer, regardless of the value of r.  Adding up the total light received from all the shells, therefore, produces an infinite answer.

In mathematical form, this is

I = \int_{0}^{\infty} I(r) n dV =  \int_{0}^{\infty} \frac{L}{4\pi r^2} 4\pi r^{2} n dr \rightarrow \infty

where L is the luminosity of a source, n is the number density of sources and I(r) is the intensity of radiation received from a source at distance r.

In fact the answer is not going to be infinite in practice because nearby stars will block out some of the light from stars behind them. But in any case the sky should be as bright as the surface of a star like the Sun, as each line of sight will eventually end on a star. This is emphatically not what is observed.

It might help to think of this in another way, by imagining yourself in a very large forest. You may be able to see some way through the gaps in the nearby trees, but if the forest is infinite every possible line of sight will end with a tree.

As is the case with many other famous names, this puzzle was not actually first discussed by Olbers. His discussion was published relatively recently, in 1826. In fact, Thomas Digges struggled with this problem as early as 1576. At that time, however, the mathematical technique of adding up the light from an infinite set of narrow shells, which relies on the differential calculus, was not known. Digges therefore simply concluded that distant sources must just be too faint to be seen and did not worry about the problem of the number of sources. Johannes Kepler was also interested in this problem, and in 1610 he suggested that the Universe must be finite in spatial extent. Edmund Halley (of cometary fame) also addressed the  issue about a century later, in 1720, but did not make significant progress. The first discussion which would nowadays be regarded as a  correct formulation of the problem was published in 1744, by Loys de Chéseaux. Unfortunately, his resolution was not correct either: he imagined that intervening space somehow absorbed the energy carried by light on its path from source to observer. Olbers himself came to a similar conclusion in the piece that forever associated his name with this cosmological conundrum.

Later students of this puzzle included Lord Kelvin, who speculated that the extra light may be absorbed by dust. This is no solution to the problem either because, while dust may initially simply absorb optical light, it would soon heat up and re-radiate the energy at infra-red wavelengths. There would still be a problem with the total amount of electromagnetic radiation reaching an observer. To be fair to Kelvin, however, at the time of his writing it was not known that heat and light were both forms of the same kind of energy and it was not obvious that they could be transformed into each other in this way.

To show how widely Olbers’ paradox was known in the nineteenth Century, it is worth also mentioning that Friedrich Engels, Manchester factory owner and co-author with Karl Marx of the Communist Manifesto also considered it in his book The Dialectics of Nature. In this discussion he singles out Kelvin for particular criticism, mainly for the reason that Kelvin was a member of the aristocracy.

In fact, probably the first inklings of a correct resolution of the Olbers’ Paradox were contained not in a dry scientific paper, but in a prose poem entitled Eureka published in 1848 by Edgar Allan Poe. Poe’s astonishingly prescient argument is based on the realization that light travels with a finite speed. This in itself was not a new idea, as it was certainly known to Newton almost two centuries earlier. But Poe did understand its relevance to Olbers’ Paradox.  Light just arriving from distant sources must have set out a very long time ago; in order to receive light from them now, therefore, they had to be burning in the distant past. If the Universe has only lasted for a finite time then one can’t add shells out to infinite distances, but only as far as the distance given by the speed of light multiplied by the age of the Universe. In the days before scientific cosmology, many believed that the Universe had to be very young: the biblical account of the creation made it only a few thousand years old, so the problem was definitely avoided.

Of course, we are now familiar with the ideas that the Universe is expanding (and that light is consequently redshifted), that it may not be infinite, and that space may not be Euclidean. All these factors have to be taken into account when one calculates the brightness of the sky in different cosmological models. But the fundamental reason why the paradox is not a paradox does boil down to the finite lifetime, not necessarily of the Universe, but of the individual structures that can produce light. According to the theory Special Relativity, mass and energy are equivalent. If the density of matter is finite, so therefore is the amount of energy it can produce by nuclear reactions. Any object that burns matter to produce light can therefore only burn for a finite time before it fizzles out.

Imagine that the Universe really is infinite. For all the light from all the sources to arrive at an observer at the same time (i.e now) they would have to have been switched on at different times – those furthest away sending their light towards us long before those nearby had switched on. To make this work we would have to be in the centre of a carefully orchestrated series of luminous shells switching on an off in sequence in such a way that their light all reached us at the same time. This would not only put us  in a very special place in the Universe but also require the whole complicated scheme to be contrived to make our past light cone behave in this peculiar way.

With the advent of the Big Bang theory, cosmologists got used to the idea that all of matter was created at a finite time in the past anyway, so  Olber’s Paradox receives a decisive knockout blow, but it was already on the ropes long before the Big Bang came on the scene.

As a final remark, it is worth mentioning that although Olbers’ Paradox no longer stands as a paradox, the ideas behind it still form the basis of important cosmological tests. The brightness of the night sky may no longer be feared infinite, but there is still expected to be a measurable glow of background light produced by distant sources too faint to be seen individually. In principle,  in a given cosmological model and for given assumptions about how structure formation proceeded, one can calculate the integrated flux of light from all the sources that can be observed at the present time, taking into account the effects of redshift, spatial geometry and the formation history of sources. Once this is done, one can compare predicted light levels with observational limits on the background glow in certain wavebands which are now quite strict .

Heart of Darkness

Posted in Astrohype, The Universe and Stuff with tags , , , , , on March 6, 2012 by telescoper

Now here’s a funny thing. I’ve been struggling to keep up with matters astronomical recently owing to pressure of other things, but I could resist a quick post today about an interesting object, a galaxy cluster called Abell 520. New observations of this complex system – which appears to involve a collision between two smaller clusters, hence its nickname “The Train Wreck Cluster” – have led to a flurry of interest all over the internet, because the dark matter in the cluster isn’t behaving entirely as expected. Here is the abstract of the paper (by Jee et al., now published in the Astrophysical Journal):

We present a Hubble Space Telescope/Wide Field Planetary Camera 2 weak-lensing study of A520, where a previous analysis of ground-based data suggested the presence of a dark mass concentration. We map the complex mass structure in much greater detail leveraging more than a factor of three increase in the number density of source galaxies available for lensing analysis. The “dark core” that is coincident with the X-ray gas peak, but not with any stellar luminosity peak is now detected with more than 10 sigma significance. The ~1.5 Mpc filamentary structure elongated in the NE-SW direction is also clearly visible. Taken at face value, the comparison among the centroids of dark matter, intracluster medium, and galaxy luminosity is at odds with what has been observed in other merging clusters with a similar geometric configuration. To date, the most remarkable counter-example might be the Bullet Cluster, which shows a distinct bow-shock feature as in A520, but no significant weak-lensing mass concentration around the X-ray gas. With the most up-to-date data, we consider several possible explanations that might lead to the detection of this peculiar feature in A520. However, we conclude that none of these scenarios can be singled out yet as the definite explanation for this puzzle.

Here’s a pretty picture in which the dark matter distribution (inferred from gravitational lensing measurements) is depicted by the bluey-green colours and which seems to be more concentrated in the middle of the picture than the galaxies, although the whole thing is clearly in a rather disturbed state:

Credit: NASA, ESA, CFHT, CXO, M.J. Jee (University of California, Davis), and A. Mahdavi (San Francisco State University)

The three main components of a galaxy cluster are: (i) its member galaxies; (ii) an extended distribution of hot X-ray emitting gas and (iii) a dark matter halo. In a nutshell, the main finding of this study is that the dark matter seems to be stuck in the middle of the cluster with the X-ray gas, while the  visible galaxies seem to be sloshing about all over the place.

No doubt there will be people jumping to the conclusion that this cluster proves that the theory of dark matter is all wrong, but I think that it simply demonstrates that this is a complicated object and we don’t really understand what’s going on. The paper gives a long list of possible explanations, but there’s no way of knowing at the moment which (if any) is correct.

The Universe is like that. Most of it is a complete mess.

Dirge without Music

Posted in Poetry with tags , , on March 5, 2012 by telescoper

I am not resigned to the shutting away of loving hearts in the hard ground.
So it is, and so it will be, for so it has been, time out of mind:
Into the darkness they go, the wise and the lovely. Crowned
With lilies and with laurel they go; but I am not resigned.
Lovers and thinkers, into the earth with you.
Be one with the dull, the indiscriminate dust.
A fragment of what you felt, of what you knew,
A formula, a phrase remains,–but the best is lost.
The answers quick and keen, the honest look, the laughter, the love, —
They are gone. They are gone to feed the roses. Elegant and curled
Is the blossom. Fragrant is the blossom. I know. But I do not approve.
More precious was the light in your eyes than all the roses in the world.
Down, down, down into the darkness of the grave,
Gently they go, the beautiful, the tender, the kind;
Quietly they go, the intelligent, the witty, the brave.
I know. But I do not approve. And I am not resigned.

by Edna St Vincent Millay (1892-1950)