Archive for Eclipse

Enjoy the Eclipse, but watch out for the cosmologists and druids!

Posted in Biographical, The Universe and Stuff with tags , , , , , on April 7, 2024 by telescoper

Ahead of tomorrow’s total eclipse of the Sun visible from a large part of the USA, I can’t resist sharing this excerpt from The Times warning about the consequences of a mass influx of people to Cornwall for the total eclipse of the Sun that was visible on August 11th 1999, almost 25 years ago. No doubt there are similar things going around about tomorrow’s eclipse:

I did write a letter to the Times complaining that, as a cosmologist, I felt this was very insulting… to druids. They didn’t publish it.

Anyway, I did get to see the total solar eclipse of 1999, not from Cornwall (where it was overcast and rainy) but from the island of Alderney (one of the Channel Islands). There was quite a lot of cloud cover in the morning of the big event so I was expecting to be disappointed. Indeed, the very start of the eclipse was hidden by cloud and there were groans from the large crowd assembled to watch it. A few seconds later, however, the clouds parted and we got a wonderful view. I remember very well that it seemed to get much colder during totality and an eery wind started to blow. Another thing is that all the birds thought it was night already and started to roost, although it was only around 11am.

You might think astronomers would be a bit indifferent to eclipses because they are well understood and totally predictable. But to experience an eclipse in person has a very powerful effect (or did on me anyway). We may be scientists but we don’t respond entirely rationally to everything. Nor should we.

Here’s a (not very good) scan of a (slightly damaged) picture from that eclipse:

Anyway, tomorrow (i.e. 8th April 2024) the total solar eclipse crosses North America with parts of 15 states able to view it: the eclipse will first appear along Mexico’s Pacific Coast at around 11:07 a.m. PDT, then travel across a swath of the U.S., from Texas to Maine, and into Canada. About 31.6 million people live in the path of totality. The path will range between 108 and 122 miles wide. An additional 150 million people live within 200 miles of the path of totality.

Do make the effort to see it if you can. It’s a remarkable experience that will live long in your memory. But watch out for the cosmologists and druids!

The Danger to Science from Hype

Posted in The Universe and Stuff with tags , , , , , , , on October 5, 2019 by telescoper

I came across an article in the Irish Times this morning entitled `Hyping research runs risk of devaluing science‘. That piece is directly aimed at medical science and the distressing tendency of some researchers in that field to make extravagant claims about `miracle cures’ that turn out to be a very long way from being scientifically tested. The combination of that article, yesterday’s blog post, and the fact that this year I’ve been speaking and writing a lot about the 1919 Eclipse expedition reminded me that I ended a book I wrote in 1998 with a discussion of the dangers to science of researchers being far too certain  and giving the impression that they are members of some sort priesthood that thinks it deals in absolute truths.

I decided to post the last few paragraphs of that book here because they talk about the responsibility scientists have to be honest about the limitations of their research and the uncertainties that surround any new discovery. Science has done great things for humanity, but it is fallible. Too many scientists are too certain about things that are far from proven. This can be damaging to science itself, as well as to the public perception of it. Bandwagons proliferate, stifling original ideas and leading to the construction of self-serving cartels. This is a fertile environment for conspiracy theories to flourish.

To my mind the thing  that really separates science from religion is that science is an investigative process, not a collection of truths. Each answer simply opens up more questions.  The public tends to see science as a collection of “facts” rather than a process of investigation. The scientific method has taught us a great deal about the way our Universe works, not through the exercise of blind faith but through the painstaking interplay of theory, experiment and observation.

This is what I wrote in 1998:

Science does not deal with ‘rights’ and ‘wrongs’. It deals instead with descriptions of reality that are either ‘useful’ or ‘not useful’. Newton’s theory of gravity was not shown to be ‘wrong’ by the eclipse expedition. It was merely shown that there were some phenomena it could not describe, and for which a more sophisticated theory was required. But Newton’s theory still yields perfectly reliable predictions in many situations, including, for example, the timing of total solar eclipses. When a theory is shown to be useful in a wide range of situations, it becomes part of our standard model of the world. But this doesn’t make it true, because we will never know whether future experiments may supersede it. It may well be the case that physical situations will be found where general relativity is supplanted by another theory of gravity. Indeed, physicists already know that Einstein’s theory breaks down when matter is so dense that quantum effects become important. Einstein himself realised that this would probably happen to his theory.

Putting together the material for this book, I was struck by the many parallels between the events of 1919 and coverage of similar topics in the newspapers of 1999. One of the hot topics for the media in January 1999, for example, has been the discovery by an international team of astronomers that distant exploding stars called supernovae are much fainter than had been predicted. To cut a long story short, this means that these objects are thought to be much further away than expected. The inference then is that not only is the Universe expanding, but it is doing so at a faster and faster rate as time passes. In other words, the Universe is accelerating. The only way that modern theories can account for this acceleration is to suggest that there is an additional source of energy pervading the very vacuum of space. These observations therefore hold profound implications for fundamental physics.

As always seems to be the case, the press present these observations as bald facts. As an astrophysicist, I know very well that they are far from unchallenged by the astronomical community. Lively debates about these results occur regularly at scientific meetings, and their status is far from established. In fact, only a year or two ago, precisely the same team was arguing for exactly the opposite conclusion based on their earlier data. But the media don’t seem to like representing science the way it actually is, as an arena in which ideas are vigorously debated and each result is presented with caveats and careful analysis of possible error. They prefer instead to portray scientists as priests, laying down the law without equivocation. The more esoteric the theory, the further it is beyond the grasp of the non-specialist, the more exalted is the priest. It is not that the public want to know – they want not to know but to believe.

Things seem to have been the same in 1919. Although the results from Sobral and Principe had then not received independent confirmation from other experiments, just as the new supernova experiments have not, they were still presented to the public at large as being definitive proof of something very profound. That the eclipse measurements later received confirmation is not the point. This kind of reporting can elevate scientists, at least temporarily, to the priesthood, but does nothing to bridge the ever-widening gap between what scientists do and what the public think they do.

As we enter a new Millennium, science continues to expand into areas still further beyond the comprehension of the general public. Particle physicists want to understand the structure of matter on tinier and tinier scales of length and time. Astronomers want to know how stars, galaxies  and life itself came into being. But not only is the theoretical ambition of science getting bigger. Experimental tests of modern particle theories require methods capable of probing objects a tiny fraction of the size of the nucleus of an atom. With devices such as the Hubble Space Telescope, astronomers can gather light that comes from sources so distant that it has taken most of the age of the Universe to reach us from them. But extending these experimental methods still further will require yet more money to be spent. At the same time that science reaches further and further beyond the general public, the more it relies on their taxes.

Many modern scientists themselves play a dangerous game with the truth, pushing their results one-sidedly into the media as part of the cut-throat battle for a share of scarce research funding. There may be short-term rewards, in grants and TV appearances, but in the long run the impact on the relationship between science and society can only be bad. The public responded to Einstein with unqualified admiration, but Big Science later gave the world nuclear weapons. The distorted image of scientist-as-priest is likely to lead only to alienation and further loss of public respect. Science is not a religion, and should not pretend to be one.

PS. You will note that I was voicing doubts about the interpretation of the early results from supernovae  in 1998 that suggested the universe might be accelerating and that dark energy might be the reason for its behaviour. Although more evidence supporting this interpretation has since emerged from WMAP and other sources, I remain skeptical that we cosmologists are on the right track about this. Don’t get me wrong – I think the standard cosmological model is the best working hypothesis we have – I just think we’re probably missing some important pieces of the puzzle. I may of course be wrong in this but, then again, so might everyone.

 

 

 

A Prominence from Principe

Posted in History, The Universe and Stuff with tags , , , , on April 13, 2019 by telescoper

While I seem to be on a little run of posts about the 1919 Eclipse I thought I’d share the above photograph, taken at Principe, that shows that the bending of light from stars was not the only observation made at this eclipse. At the top of the figure you can see a wonderful example of a solar prominence..

The Mystery Object Revealed

Posted in History, The Universe and Stuff with tags , , , , , on April 12, 2019 by telescoper

As I revealed this afternoon in my talk at the Royal Astronomical Society, yesterday’s mystery object..

..is in fact the 4-inch object (geddit?) glass that was manufactured by Howard Grubb in Dublin and taken to Sobral in Brazil in 1919 to be used in a famous experiment to measure the bending of light by the Sun during a total eclipse.

Here is a picture of the observing setup in Sobral:

The 4-inch lens is mounted in the square tube on the right. The eclipse was observed using a coelostat (a steerable mirror) that reflected light into the telescopes. Here is a photograph of the coelostat:

The object glass and coelostat are usually on display at Dunsink Observatory but these are currently en route to Brazil for the commemorations of the centenary of the historic expedition.

Photo Credits to Tom Ray of DIAS…

Misty, by Ruth Padel

Posted in Poetry with tags , , on August 21, 2017 by telescoper

How I love

The darkwave music
Of a sun’s eclipse
You can’t see for cloud

The saxophonist playing ‘Misty’
In the High Street outside Barclays

Accompanied by mating-calls
Sparked off
In a Jaguar alarm

The way you’re always there
Where I’m thinking

Or several beats ahead.

by Ruth Padel

The Story of the 1919 Eclipse Expeditions

Posted in Books, Talks and Reviews, History, The Universe and Stuff with tags , , , , , , on August 21, 2017 by telescoper

Unless you have been living on another planet, you will know that today there will be an eclipse of the Sun although from the UK it will be rather underwhelming, as only about 4% of the Sun’s disk will be covered by the moon; for totality you have to be in the United States.  For the record, however, the eclipse will begin 15:46 GMT on August 21 out over the Pacific. It will reach the coast of Oregon at Lincoln City, just west of Salem, at 16:04 GMT (09:04 local time) where it will reach its maximum  at 17:17 GMT (10:17 local time). The path of totality will then track right across the United States to South Carolina. For more details see here. Best wishes to all who are hoping to see this cosmic spectacle! I saw the total eclipse of August 11, 1999 from Alderney in the Channel Islands, and it was a very special experience.

Here’s a (not very good and slightly damaged) scan of a picture from that eclipse that I found last night in a box of old photographs:

Before starting I can’t resist adding this excerpt from the Times warning about the consequences of a mass influx of people to Cornwall for the 1999 eclipse. No doubt there are similar things going around about today’s eclipse:

I did write a letter to the Times complaining that, as a cosmologist, I felt this was very insulting to druids. They didn’t publish it.

This provides me with a good excuse to repost an old item about the famous expedition during which, on 29th May 1919, measurements were made that have gone down in history as vindicating Einstein’s (then) new general theory of relativity. I’ve written quite a lot about this in past years, including a little book and a slightly more technical paper. I decided, though, to post this little piece which is based on an article I wrote some years ago for Firstscience.

 

–0–

 

The Eclipse that Changed the Universe

A total eclipse of the Sun is a moment of magic: a scant few minutes when our perceptions of the whole Universe are turned on their heads. The Sun’s blinding disc is replaced by ghostly pale tentacles surrounding a black heart – an eerie experience witnessed by hundreds of millions of people throughout Europe and the Near East last August.

But one particular eclipse of the Sun, eighty years ago, challenged not only people’s emotional world. It was set to turn the science of the Universe on its head. For over two centuries, scientists had believed Sir Isaac Newton’s view of the Universe. Now his ideas had been challenged by a young German-Swiss scientist, called Albert Einstein. The showdown – Newton vs Einstein – would be the total eclipse of 29 May 1919.

Newton’s position was set out in his monumental Philosophiae Naturalis Principia Mathematica, published in 1687. The Principia – as it’s familiarly known – laid down a set of mathematical laws that described all forms of motion in the Universe. These rules applied as much to the motion of planets around the Sun as to more mundane objects like apples falling from trees.

At the heart of Newton’s concept of the Universe were his ideas about space and time. Space was inflexible, laid out in a way that had been described by the ancient Greek mathematician Euclid in his laws of geometry. To Newton, space was the immovable and unyielding stage on which bodies acted out their motions. Time was also absolute, ticking away inexorably at the same rate for everyone in the Universe.

Sir Isaac Newton, painted by Sir Godfrey Kneller. Picture Credit: National Portrait Gallery,

For over 200 years, scientists saw the Cosmos through Newton’s eyes. It was a vast clockwork machine, evolving by predetermined rules through regular space, against the beat of an absolute clock. This edifice totally dominated scientific thought, until it was challenged by Albert Einstein.

In 1905, Einstein dispensed with Newton’s absolute nature of space and time. Although born in Germany, during this period of his life he was working as a patent clerk in Berne, Switzerland. He encapsulated his new ideas on motion, space and time in his special theory of relativity. But it took another ten years for Einstein to work out the full consequences of his ideas, including gravity. The general theory of relativity, first aired in 1915, was as complete a description of motion as Newton had prescribed in his Principia. But Einstein’s description of gravity required space to be curved. Whereas for Newton space was an inflexible backdrop, for Einstein it had to bend and flex near massive bodies. This warping of space, in turn, would be responsible for guiding objects such as planets along their orbits.

Albert Einstein (left), pictured with Arthur Stanley Eddington (right). Picture Credit: Royal Greenwich Observatory.

By the time he developed his general theory, Einstein was back in Germany, working in Berlin. But a copy of his general theory of relativity was soon smuggled through war-torn Europe to Cambridge. There it was read by Arthur Stanley Eddington, Britain’s leading astrophysicist. Eddington realised that Einstein’s theory could be tested. If space really was distorted by gravity, then light passing through it would not travel in a straight line, but would follow a curved path. The stronger the force of gravity, the more the light would be bent. The bending would be largest for light passing very close to a very massive body, such as the Sun.

Unfortunately, the most massive objects known to astronomers at the time were also very bright. This was before black holes were seriously considered, and stars provided the strongest gravitational fields known. The Sun was particularly useful, being a star right on our doorstep. But it is impossible to see how the light from faint background stars might be bent by the Sun’s gravity, because the Sun’s light is so bright it completely swamps the light from objects beyond it.

 

A scientific sketch of the path of totality for the 1919 eclipse. Picture Credit: Royal Greenwich Observatory.

Eddington realised the solution. Observe during a total eclipse, when the Sun’s light is blotted out for a few minutes, and you can see distant stars that appear close to the Sun in the sky. If Einstein was right, the Sun’s gravity would shift these stars to slightly different positions, compared to where they are seen in the night sky at other times of the year when the Sun far away from them. The closer the star appears to the Sun during totality, the bigger the shift would be.

Eddington began to put pressure on the British scientific establishment to organise an experiment. The Astronomer Royal of the time, Sir Frank Watson Dyson, realised that the 1919 eclipse was ideal. Not only was totality unusually long (around six minutes, compared with the two minutes we experienced in 1999) but during totality the Sun would be right in front of the Hyades, a cluster of bright stars.

But at this point the story took a twist. Eddington was a Quaker and, as such, a pacifist. In 1917, after disastrous losses during the Somme offensive, the British government introduced conscription to the armed forces. Eddington refused the draft and was threatened with imprisonment. In the end, Dyson’s intervention was crucial persuading the government to spare Eddington. His conscription was postponed under the condition that, if the war had finished by 1919, Eddington himself would lead an expedition to measure the bending of light by the Sun. The rest, as they say, is history.

The path of totality of the 1919 eclipse passed from northern Brazil, across the Atlantic Ocean to West Africa. In case of bad weather (amongst other reasons) two expeditions were organised: one to Sobral, in Brazil, and the other to the island of Principe, in the Gulf of Guinea close to the West African coast. Eddington himself went to Principe; the expedition to Sobral was led by Andrew Crommelin from the Royal Observatory at Greenwich.

British scientists in the field at their observing site in Sobral in 1919. Picture Credit: Royal Greenwich Observatory

The expeditions did not go entirely according to plan. When the day of the eclipse (29 May) dawned on Principe, Eddington was greeted with a thunderstorm and torrential rain. By mid-afternoon the skies had partly cleared and he took some pictures through cloud.

Meanwhile, at Sobral, Crommelin had much better weather – but he had made serious errors in setting up his equipment. He focused his main telescope the night before the eclipse, but did not allow for the distortions that would take place as the temperature climbed during the day. Luckily, he had taken a backup telescope along, and this in the end provided the best results of all.

After the eclipse, Eddington himself carefully measured the positions of the stars that appeared near the Sun’s eclipsed image, on the photographic plates exposed at both Sobral and Principe. He then compared them with reference positions taken previously when the Hyades were visible in the night sky. The measurements had to be incredibly accurate, not only because the expected deflections were small. The images of the stars were also quite blurred, because of problems with the telescopes and because they were seen through the light of the Sun’s glowing atmosphere, the solar corona.

Before long the results were ready. Britain’s premier scientific body, the Royal Society, called a special meeting in London on 6 November. Dyson, as Astronomer Royal took the floor, and announced that the measurements did not support Newton’s long-accepted theory of gravity. Instead, they agreed with the predictions of Einstein’s new theory.

The final proof: the small red line shows how far the position of the star has been shifted by the Sun’s gravity. Each star experiences a tiny deflection, but averaged over many exposures the results definitely support Einstein’s theory. Picture Credit: Royal Greenwich Observatory.

The press reaction was extraordinary. Einstein was immediately propelled onto the front pages of the world’s media and, almost overnight, became a household name. There was more to this than purely the scientific content of his theory. After years of war, the public embraced a moment that moved mankind from the horrors of destruction to the sublimity of the human mind laying bare the secrets of the Cosmos. The two pacifists in the limelight – the British Eddington and the German-born Einstein – were particularly pleased at the reconciliation between their nations brought about by the results.

But the popular perception of the eclipse results differed quite significantly from the way they were viewed in the scientific establishment. Physicists of the day were justifiably cautious. Eddington had needed to make significant corrections to some of the measurements, for various technical reasons, and in the end decided to leave some of the Sobral data out of the calculation entirely. Many scientists were suspicious that he had cooked the books. Although the suspicion lingered for years in some quarters, in the end the results were confirmed at eclipse after eclipse with higher and higher precision.

In this cosmic ‘gravitational lens,’ a huge cluster of galaxies distorts the light from more distant galaxies into a pattern of giant arcs.  Picture Credit: NASA

Nowadays astronomers are so confident of Einstein’s theory that they rely on the bending of light by gravity to make telescopes almost as big as the Universe. When the conditions are right, gravity can shift an object’s position by far more than a microscopic amount. The ideal situation is when we look far out into space, and centre our view not on an individual star like the Sun, but on a cluster of hundreds of galaxies – with a total mass of perhaps 100 million million suns. The space-curvature of this immense ‘gravitational lens’ can gather the light from more remote objects, and focus them into brilliant curved arcs in the sky. From the size of the arcs, astronomers can ‘weigh’ the cluster of galaxies.

Einstein didn’t live long enough to see through a gravitational lens, but if he had he would definitely have approved….

Misty

Posted in Poetry with tags , , , on March 23, 2015 by telescoper

How I love

The darkwave music
Of a sun’s eclipse
You can’t see for cloud

The saxophonist playing ‘Misty’
In the High Street outside Barclays

Accompanied by mating-calls
Sparked off
In a Jaguar alarm

The way you’re always there
Where I’m thinking

Or several beats ahead.

by Ruth Padel

The Eclipse Coincidence Question

Posted in The Universe and Stuff with tags , , , , on March 22, 2015 by telescoper

The day before last week’s (partial) solar eclipse I posted an item in which I mentioned the apparent coincidence that makes total eclipses possible, namely that the Moon and Sun have very similar angular sizes when seen from Earth.

In the interest of balance I thought I would direct you to a paper by Steve Balbus that develops a detailed argument to the contrary along the lines I described briefly in my earlier post. I am not entirely convinced but do read it and make up your own mind:

Here is the abstract:

The nearly equal lunar and solar angular sizes as subtended at the Earth is generally regarded as a coincidence. This is, however, an incidental consequence of the tidal forces from these bodies being comparable. Comparable magnitudes implies strong temporal modulation, as the forcing frequencies are nearly but not precisely equal. We suggest that on the basis of paleogeographic reconstructions, in the Devonian period, when the first tetrapods appeared on land, a large tidal range would accompany these modulated tides. This would have been conducive to the formation of a network of isolated tidal pools, lending support to A.S. Romer’s classic idea that the evaporation of shallow pools was an evolutionary impetus for the development of chiridian limbs in aquatic tetrapodomorphs. Romer saw this as the reason for the existence of limbs, but strong selection pressure for terrestrial navigation would have been present even if the limbs were aquatic in origin. Since even a modest difference in the Moon’s angular size relative to the Sun’s would lead to a qualitatively different tidal modulation, the fact that we live on a planet with a Sun and Moon of close apparent size is not entirely coincidental: it may have an anthropic basis.

I don’t know if it’s a coincidence or not but I always follow the advice given by my role model, Agatha Christie’s Miss Marple in Nemesis: “Any coincidence is worth noticing. You can throw it away later if it is only a coincidence.”..

That Was The Eclipse That Was..

Posted in The Universe and Stuff with tags , , , on March 20, 2015 by telescoper

It’s been an astronomical and meteorological rollercoaster of a morning. When I woke up at 6am this morning, the Sun was just rising. There was hazy cloud and there seemed to be every chance that it would break up to allowing viewing of today’s partial solar eclipse. Unfortunately, however, the cloud thickened rather than breaking up so I abandoned my plan to watch from the seafront and headed up to the University of Sussex campus at Falmer. Being higher up and a few miles inland, the weather is often clearer in Falmer than in Brighton. Unfortunately it was even murkier when I got here, so I assumed I was in for a disappointing morning.

Nevertheeclipse_cloudsless I did join the large gathering in Library Square to experience the event. First contact between the Moon and the Sun happened at about 8.30, but the cloud cover was total at that point so nothing was visible. It did get gradually darker, but this happened slowly enough for eyes to adapt to the dark so it wasn’t all that noticeable to us humans. The birds on campus certainly noticed, however, and began to perform display roosting behaviour thinking it was evening. It also got really very cold.

Around 9.30 the coverage of the Sun by the Moon was about its maximum – 85% or so – but everything was still enshrouded in cloud. The crowd waited patiently in the gloom. It was a very British experience, a large group of people sharing their sense of collective disappointment in appropriately stoical fashion.

eclipse_crowd

Gradually the wind seemed to increase, pushing the clouds over more quickly and causing them to break up. Then, suddenly, a small gap in the cloud opened up and there was the eclipse. For about a second. It may have been only a moment, but it generated a huge cheer which, I should add, wasn’t entirely ironic. The breaking up of the clouds continued and we were treated to several good views of the main event. It was definitely worth it.

Most of the pictures I took didn’t come out at all well, but here is one with the famous Meeting House in the foreground:

eclipse_meetingAnd here’s a rather nice picture from John Sander of the International Office at Sussex University, showing yours truly during the final stages of the eclipse..

Eclipse_me

I’ll add more pictures as I find them. Please feel free to share your comments and observations via the appropriate box!

A Solar Eclipse

Posted in Poetry, The Universe and Stuff with tags , , , on March 17, 2015 by telescoper

In that great journey of the stars through space
    About the mighty, all-directing Sun,
    The pallid, faithful Moon, has been the one
Companion of the Earth. Her tender face,
Pale with the swift, keen purpose of that race,
    Which at Time’s natal hour was first begun,
    Shines ever on her lover as they run
And lights his orbit with her silvery smile.

Sometimes such passionate love doth in her rise,
    Down from her beaten path she softly slips,
And with her mantle veils the Sun’s bold eyes,
    Then in the gloaming finds her lover’s lips.
While far and near the men our world call wise
    See only that the Sun is in eclipse.

by Ella Wheeler Wilcox (1850-1919)