Archive for hydrodynamics

Weekly Update from the Open Journal of Astrophysics – 24/05/205

Posted in OJAp Papers, Open Access, The Universe and Stuff with tags , , , , , , , , , , , , , , , , , on May 24, 2025 by telescoper

It’s  time once again for the regular Saturday update of papers published during the past week at the Open Journal of Astrophysics. Since the last update we have published three new papers, which brings the number in Volume 8 (2025) up to 62 and the total so far published by OJAp up to 297.

In chronological order of publication, the three papers published this week, with their overlays, are as follows. You can click on the images of the overlays to make them larger should you wish to do so.

The first paper to report is: “Jet-shaped filamentary ejecta in common envelope evolution” by Ron Schreier, Shlomi Hillel and Noam Soker (Technion, Haifa, Israel). This paper, which was published on Monday May 19th 2025 in the folder High-Energy Astrophysical Processes, presents three-dimensional hydrodynamical simulations of common envelope evolution of a neutron star inside the envelope of a rotating red supergiant with Rayleigh-Taylor instabilities forming filamentary ejecta.

The overlay is here:

You can find the officially accepted version on arXiv here.

Second one up is “Weighing The Options: The Unseen Companion in LAMOST J2354 is Likely a Massive White Dwarf” by M. A. Tucker, A. J. Wheeler & D. M. Rowan (Ohio State University, USA) and M. E. Huber (U. Hawaii, USA). This paper was published on Tuesday 20th May 2025 in the folder for Solar and Stellar Astrophysics. It discusses a spectroscopic study of the binary system LAMOST J235456.73+335625 (J2354) with a discussion of the implications for the nature of the dark component.

The overlay is here:

 

You can find the officially-accepted version of the paper on arXiv here.

The third and last paper of the week, published on Thursday May 22nd 2025, also in the folder Solar and Stellar Astrophysics, is “How to use Gaia parallaxes for stars with poor astrometric fits” by Kareem El-Badry (Caltech, USA).  This paper presents a method for extracting reasonable estimates of stellar parallaxes from Gaia data when the overall astrometric solution is unreliable due to errors and noise

Here is the overlay:

You can find the officially accepted version of this paper on arXiv here.

That’s all the papers for this week. Looking at the publishing workflow, I expect we will pass the 300 mark next week. We’ll see when I post the next update next Saturday.

 

Cosmic Swirly Straws Feed Galaxy

Posted in The Universe and Stuff with tags , , , , , on June 5, 2013 by telescoper

I came across this video on youtube and was intrigued because the title seemed like a crossword clue (to which I couldn’t figure out the answer). It turns out that it goes with a piece in the Guardian which describes a computer simulation showing the formation of a galaxy during the first 2bn years of the Universe’s evolution. Those of us interested in cosmic structures on a larger scale than galaxies usually show such simulations in co-moving coordinates (i.e. in a box that expands at the same rate as the Universe), but this one is in physical coordinates showing the actual size of the objects therein; the galaxy is seen first to condense out of the expanding distribution of matter, but then grows by accreting matter in a complicated and rather beautiful way.

This calculation includes gravitational and hydrodynamical effects, allowing it to trace the separate behaviour of dark matter and gas (predominantly hydrogen).  You can see that this particular object forms very early on; the current age of the Universe is estimated to be about 13 – 14 billion years. When we look far into space using very big telescopes we see objects from which light has taken billion of years to reach us. We can therefore actually see galaxies as they were forming and can therefore test observationally whether they form as theory (and simulation) suggest.